Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Front Immunol ; 15: 1360068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596666

RESUMEN

The complex interplay between genetic and environmental factors is considered the cause of neurodegenerative diseases including Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Among the environmental factors, toxins produced by cyanobacteria have received much attention due to the significant increase in cyanobacteria growth worldwide. In particular, L-BMAA toxin, produced by diverse taxa of cyanobacteria, dinoflagellates and diatoms, has been extensively correlated to neurodegeneration. The molecular mechanism of L-BMAA neurotoxicity is still cryptic and far from being understood. In this research article, we have investigated the molecular pathways altered by L-BMAA exposure in cell systems, highlighting a significant increase in specific stress pathways and an impairment in autophagic processes. Interestingly, these changes lead to the accumulation of both α-synuclein and TDP43, which are correlated with PD and ALS proteinopathy, respectively. Finally, we were able to demonstrate specific alterations of TDP43 WT or pathological mutants with respect to protein accumulation, aggregation and cytoplasmic translocation, some of the typical features of both sporadic and familial ALS.


Asunto(s)
Aminoácidos Diaminos , Esclerosis Amiotrófica Lateral , Cianobacterias , Enfermedad de Parkinson , Humanos , Esclerosis Amiotrófica Lateral/patología , alfa-Sinucleína , Toxinas de Cianobacterias , Aminoácidos Diaminos/toxicidad
2.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403141

RESUMEN

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Asunto(s)
Aminoácidos Diaminos , Aminoácidos , Aminoácidos/farmacología , Proteínas de Transporte Vesicular de Monoaminas , Aminoácidos Diaminos/toxicidad , Tirosina , Neurotoxinas/metabolismo
3.
Sci Total Environ ; 922: 171255, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417517

RESUMEN

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.


Asunto(s)
Aminoácidos Diaminos , Neurotoxinas , Animales , Humanos , Neurotoxinas/química , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/química , Toxinas de Cianobacterias , Estrés Oxidativo
4.
Neurosci Lett ; 821: 137593, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38103629

RESUMEN

The first mechanism of toxicity proposed for the cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.


Asunto(s)
Aminoácidos Diaminos , Toxinas de Cianobacterias , Ácido Glutámico , Vesículas Sinápticas , Neurotoxinas/toxicidad , Aminoácidos Diaminos/toxicidad
5.
Toxins (Basel) ; 15(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999501

RESUMEN

Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid ß-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer's. Consequently, specific detection methods are required to assess the presence of BMAA and its isomers in environmental and clinical materials, including cyanobacteria and mollusks. Although the separation of isomers such as ß-amino-N-methylalanine (BAMA), N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) from BMAA has been demonstrated during routine analysis, a further compounding factor is the potential presence of enantiomers for some of these isomers. Current analytical methods for BMAA mostly do not discriminate between enantiomers, and the chiral configuration of BMAA in cyanobacteria is still largely unexplored. To understand the potential for the occurrence of D-BMAA in cyanobacteria, a chiral UPLC-MS/MS method was developed to separate BMAA enantiomers and isomers and to determine the enantiomeric configuration of endogenous free BMAA in a marine Lyngbya mat and two mussel reference materials. After extraction, purification and derivatization with N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester ((S)-NIFE), both L- and D-BMAA were identified as free amino acids in cyanobacterial materials, whereas only L-BMAA was identified in mussel tissues. The finding of D-BMAA in biological environmental materials raises questions concerning the source and role of BMAA enantiomers in neurological disease.


Asunto(s)
Aminoácidos Diaminos , Bivalvos , Cianobacterias , Animales , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Aminoácidos Diaminos/toxicidad , Aminoácidos/análisis , Bivalvos/química , Cianobacterias/metabolismo , Neurotoxinas/toxicidad
6.
Toxins (Basel) ; 15(11)2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999510

RESUMEN

The cyanobacterial non-protein amino acid (AA) ß-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points.


Asunto(s)
Aminoácidos Diaminos , Neuroblastoma , Animales , Humanos , Aminoácidos , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/metabolismo , Serina/farmacología , Neurotoxinas/toxicidad
7.
Neurotox Res ; 41(5): 481-495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37552461

RESUMEN

ß-N-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria, which has been implicated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). It is postulated that chronic exposure to BMAA can lead to formation of protein aggregates, oxidative stress, and/or excitotoxicity, which are mechanisms involved in the etiology of ALS. While specific genetic mutations are identified in some instances of ALS, it is likely that a combination of genetic and environmental factors, such as exposure to the neurotoxin BMAA, contributes to disease. We used a transgenic zebrafish with an ALS-associated mutation, compared with wild-type fish to explore the potential neurotoxic effects of BMAA through chronic long-term exposures. While our results revealed low concentrations of BMAA in the brains of exposed fish, we found no evidence of decreased swim performance or behavioral differences that might be reflective of neurodegenerative disease. Further research is needed to determine if chronic BMAA exposure in adult zebrafish is a suitable model to study neurodegenerative disease initiation and/or progression.


Asunto(s)
Aminoácidos Diaminos , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Pez Cebra , Enfermedades Neurodegenerativas/etiología , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/complicaciones , Aminoácidos Diaminos/toxicidad , Animales Modificados Genéticamente , Neurotoxinas/toxicidad , Superóxido Dismutasa
8.
Neurobiol Aging ; 126: 44-57, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931113

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an average age-of-onset of ∼60 years and is usually fatal within 2-5 years of diagnosis. Mouse models based upon single gene mutations do not recapitulate all ALS pathological features. Environmental insults may also contribute to ALS, and ß-N-methylamino-L-alanine (BMAA) is an environmental toxin linked with an increased risk of developing ALS. BMAA, along with cycasin, are hypothesized to be the cause of the Guam-ALS epicenter of the 1950s. We developed a multihit model based on low expression of a dominant familial ALS TDP-43 mutation (Q331K) and chronic low-dose BMAA exposure. Our two-hit mouse model displayed a motor phenotype absent from either lesion alone. By LC/MS analysis, free BMAA was confirmed at trace levels in brain, and were as high as 405 ng/mL (free) and 208 ng/mL (protein-bound) in liver. Elevated BMAA levels in liver were associated with dysregulation of the unfolded protein response (UPR) pathway. Our data represent initial steps towards an ALS mouse model resulting from combined genetic and environmental insult.


Asunto(s)
Aminoácidos Diaminos , Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Ratones , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Neuronas Motoras/patología , Fenotipo , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad
9.
Toxicol Sci ; 193(1): 80-89, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36916757

RESUMEN

Harmful algal blooms (HABs) release toxic compounds in water and are increasing in frequency worldwide. The neurotoxin ß-methylamino-l-alanine (BMAA) is released by HABs and has garnered much attention over the past 20 years due to its association with human neurodegenerative disorders, but its effects on wildlife are still largely unknown. This study characterized the effects of chronic exposure to environmentally relevant concentrations of BMAA on the behavior and brain size of developing zebrafish (Danio rerio). Zebrafish were continuously exposed to 0, 1, 10, or 100 µg/l waterborne BMAA between 0- and 5-days postfertilization (dpf) before the onset of exogenous feeding. At 5 dpf, locomotion and responses to vibrational and visual stimuli were assessed. Following behavioral testing, larvae body and brain size were measured. Survival between 0 and 5 dpf did not differ between treatments. Moreover, BMAA exposure did not affect thigmotaxis, startle response magnitude, habituation to repeated presentation of vibrational startling stimuli, or relative brain size. A moderate increase in overall activity was observed in larvae exposed to 10 µg/l BMAA under light, but this effect was not seen in dark conditions, indicating that visual processing may have been affected by chronic BMAA exposure. Thus, passive continuous exposure to environmentally relevant concentrations of BMAA prior to first feeding in zebrafish did not affect survival or selected measures used to represent brain development, anxiety, and motor reflexes, but a limited light-dependent effect on locomotion suggests targeted neurotoxicity within the visual system.


Asunto(s)
Aminoácidos Diaminos , Pez Cebra , Animales , Humanos , Larva , Tamaño de los Órganos , Toxinas de Cianobacterias , Aminoácidos Diaminos/toxicidad
10.
PLoS One ; 18(3): e0278793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893156

RESUMEN

Chronic exposure to the Cyanobacteria biotoxin Beta-methylamino-L-alanine (BMAA) has been associated with development of a sporadic form of ALS called Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), as observed within certain Indigenous populations of Guam and Japan. Studies in primate models and cell culture have supported the association of BMAA with ALS/PDC, yet the pathological mechanisms at play remain incompletely characterized, effectively stalling the development of rationally-designed therapeutics or application of preventative measures for this disease. In this study we demonstrate for the first time that sub-excitotoxic doses of BMAA modulate the canonical Wnt signaling pathway to drive cellular defects in human neuroblastoma cells, suggesting a potential mechanism by which BMAA may promote neurological disease. Further, we demonstrate here that the effects of BMAA can be reversed in cell culture by use of pharmacological modulators of the Wnt pathway, revealing the potential value of targeting this pathway therapeutically. Interestingly, our results suggest the existence of a distinct Wnt-independent mechanism activated by BMAA in glioblastoma cells, highlighting the likelihood that neurological disease may result from the cumulative effects of distinct cell-type specific mechanisms of BMAA toxicity.


Asunto(s)
Aminoácidos Diaminos , Esclerosis Amiotrófica Lateral , Glioblastoma , Neuroblastoma , Trastornos Parkinsonianos , Animales , Humanos , Glioblastoma/inducido químicamente , Esclerosis Amiotrófica Lateral/patología , Toxinas de Cianobacterias , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/metabolismo , Neurotoxinas/toxicidad
11.
Sci Total Environ ; 874: 162445, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36848993

RESUMEN

The phycotoxin ß-N-methylamino-l-alanine (BMAA) has attracted attention due to its risks to marine organisms and human health. In this study, approximately 85 % of synchronized cells of the marine microalga Isochrysis galbana were arrested at the cell cycle G1 phase by BMAA at 6.5 µM for a 24-h exposure. The concentration of chlorophyll a (Chl a) gradually decreased, while the maximum quantum yield of PSII (Fv/Fm), the maximum relative electron transport rate (rETRmax), light utilization efficiency (α) and half-saturated light irradiance (Ik) reduced early and recovered gradually in I. galbana exposed to BMAA in 96-h batch cultures. Transcriptional expression of I. galbana analyzed at 10, 12, and 16 h disclosed multiple mechanisms of BMAA to suppress the microalgal growth. Production of ammonia and glutamate was limited by the down-regulation of nitrate transporters, glutamate synthase, glutamine synthetase, cyanate hydrolase, and formamidase. Diverse extrinsic proteins related to PSII, PSI, cytochrome b6f complex, and ATPase were influenced by BMAA at transcriptional level. Suppression of the DNA replication and mismatch repair pathways increased the accumulation of misfolded proteins, which was reflected by the up-regulated expression of proteasome to accelerate proteolysis. This study improves our understanding of the chemical ecology impacts of BMAA in marine ecosystems.


Asunto(s)
Aminoácidos Diaminos , Haptophyta , Microalgas , Humanos , Neurotoxinas/toxicidad , Haptophyta/metabolismo , Microalgas/metabolismo , Clorofila A , Ecosistema , Aminoácidos Diaminos/toxicidad , Ciclo Celular
12.
Toxins (Basel) ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36828455

RESUMEN

The neurotoxin ß-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1-1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues-regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors.


Asunto(s)
Aminoácidos Diaminos , Poliaminas , Animales , Ratas , Aminoácidos Diaminos/toxicidad , Homeostasis , Adenosina Trifosfatasas , Neurotoxinas/toxicidad
13.
Toxicon ; 222: 106978, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410456

RESUMEN

The neurotoxic, non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) has been implicated in the development of neurodegenerative diseases; however, the mechanism(s) and mode(s) of toxicity remain unclear. Similarities in the neuropathology and behavioural deficits of neonatal rats exposed to either BMAA or reserpine, a known vesicular monoamine transporter 2 (VMAT2) inhibitor, suggest a similar mode of action. The aims of this study were therefore to determine if BMAA could prevent the uptake of serotonin into dense granules via inhibition of VMAT2, and, if so, the type of inhibition caused by BMAA. Exposing platelet dense granules to BMAA resulted in a concentration-dependent reduction in serotonin uptake. The inhibition of VMAT2 was non-competitive. The findings from this study support previous reports that BMAA-associated neuropathologies in a neonatal rat model may be due to VMAT2 inhibition during critical periods of neurogenesis.


Asunto(s)
Aminoácidos Diaminos , Proteínas de Transporte Vesicular de Monoaminas , Ratas , Animales , Serotonina , Aminoácidos Diaminos/toxicidad , Aminoácidos Diaminos/metabolismo , Aminoácidos/metabolismo , Neurotoxinas/farmacología
14.
Toxicology ; 482: 153358, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309149

RESUMEN

ß-N-Methyl-Amino-L-Alanine (BMAA) produced by 95% of cyanobacteria is in constant augmentation with cyanobacteria worldwide proliferation due to global warming and eutrophication. Previously, it has been shown that this contaminant induced neurological disorders, notably by acting as a developmental toxin. However, very few studies focus on the impact of BMAA on neuroglial cells, like astrocytes and microglial cells, in a developmental context. In the present study, we investigated whether BMAA disturbs neurogenesis from mice subventricular zone (SVZ) cells and whether this neurotoxin induces neuroinflammation. We show that BMAA at 100 µM disturbs the population of undifferentiated cells (B1 and C cells) and promotes their proliferation. Further, BMAA affects the organization of neuroblasts, indicating that SVZ function could be impaired. BMAA affects neuroinflammatory processes by increasing the release of proinflammatory cytokines IL-1ß, IL-6 and TNFα. Our study adds to evidence that BMAA may disturb the central nervous system homeostasis by targeting glial cells. We highlighted that BMAA may impair SVZ niches and drives astrocytes and microglial cells into a proinflammatory status, with an ameboid shape for microglia.


Asunto(s)
Aminoácidos Diaminos , Células-Madre Neurales , Animales , Ratones , Aminoácidos Diaminos/toxicidad , Toxinas de Cianobacterias , Neurotoxinas , Alanina
15.
Life Sci ; 304: 120689, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35679915

RESUMEN

AIMS: Brain disease, in its many forms, has recently demonstrated a great socio-economic impact and represents one of the hardest challenges of present research. Although each pathology of this highly heterogenous group is characterized by individual features, there is an increasing number of common toxicological mechanisms that have been evidenced. This review aims to summarize the state-of-art knowledge concerning the role of environmental bacteria in brain diseases focusing on different mechanisms of action that could be interacting in an additive or synergistic way. MATERIALS AND METHODS: For this wide-range subject, we focused on two emerging types of bacterial-derived brain exposure and damage and specifically treated representative examples: i) environmental bacterial-derived compounds in the form of the cyanobacterial product BMAA (ß-N-methylamino-L-alanine) toxin and its isomers DAB (2,4-diaminobutyric acid) and AEG (N-(2-aminoethyl)glycine) and ii) toxicity related to bacterial infections in the form of the emerging Lyme neuroborreliosis (LNB), determined by Borrelia burgdorferi (Bb). KEY FINDINGS: Defined as pleiotropic contaminants, BMAA and Bb act through multiple toxicological pathways including inflammation, oxidative stress and excitotoxicity. Multiple investigations in in vitro and in vivo models have underlined the involved mechanisms of action but further investigations are needed to clarify the role of possible cocktail effects and underline possible new targets of intervention. SIGNIFICANCE: Environmental bacteria represent emerging risk factors because of environmental changes, anthropogenic activities and human lifestyle evolutions. Future directions and research ambitions are here discussed in order to evaluate human risk and possible ways of intervention and prevention.


Asunto(s)
Aminoácidos Diaminos , Encefalopatías , Cianobacterias , Aminoácidos Diaminos/toxicidad , Encefalopatías/etiología , Glicina , Humanos , Isomerismo , Neurotoxinas/toxicidad
16.
Sci Total Environ ; 830: 154778, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341850

RESUMEN

The neurotoxin ß-N-methylamino-L-alanine (BMAA) is an environmental factor connected to neurodegenerative diseases. BMAA can be produced by various microorganisms (e.g. bacteria, cyanobacteria, dinoflagellates and diatoms) present in diverse ecosystems. No previous study has revealed the function of BMAA in diatoms. In the present study, we combined physiological data with metabolomic and transcriptional data in order to investigate the effect and function of BMAA in the diatom Phaeodactylum tricornutum. P. tricornutum, exposed to different concentrations of exogenous BMAA, showed concentration dependent responses. When the concentration of supplemented BMAA was sufficient to arrest the growth of P. tricornutum, oxidative stress and obstructed carbon fixation were obtained from the specific metabolite and transcriptional data. Results also indicated increased concentration of intracellular chlorophyll a and alterations in the GS-GOGAT cycle, whereas the urea cycle was suppressed. We therefore conclude that BMAA represents a toxic metabolite able to control the growth of P. tricornutum by triggering oxidative stress, and further influencing photosynthesis and nitrogen metabolisms.


Asunto(s)
Aminoácidos Diaminos , Cianobacterias , Diatomeas , Aminoácidos Diaminos/toxicidad , Clorofila A/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Diatomeas/metabolismo , Ecosistema , Neurotoxinas/toxicidad
17.
Aquat Toxicol ; 245: 106121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35180454

RESUMEN

Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. ß-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.


Asunto(s)
Aminoácidos Diaminos , Anabaena , Cianobacterias , Contaminantes Químicos del Agua , Adenosina/análogos & derivados , Aminoácidos Diaminos/toxicidad , Anabaena/genética , Anabaena/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Neurotoxinas/metabolismo , ARN de Transferencia/metabolismo , Contaminantes Químicos del Agua/toxicidad
18.
Neurotox Res ; 40(2): 347-364, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35029765

RESUMEN

Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin ß-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.


Asunto(s)
Aminoácidos Diaminos , Cianobacterias , Síndromes de Neurotoxicidad , Aminoácidos Diaminos/toxicidad , Animales , Toxinas de Cianobacterias , Isomerismo , Larva , Neurotoxinas/toxicidad , Pez Cebra
19.
Neurotox Res ; 40(2): 614-635, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35023054

RESUMEN

The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin ß-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.


Asunto(s)
Aminoácidos Diaminos , Cianobacterias , Ferroptosis , Sobrecarga de Hierro , Enfermedades Neurodegenerativas , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/toxicidad , Cianobacterias/química , Toxinas de Cianobacterias , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Neurotoxinas/toxicidad
20.
Toxins (Basel) ; 13(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678990

RESUMEN

Dolphins are well-regarded sentinels for toxin exposure and can bioaccumulate a cyanotoxin called ß-N-methylamino-l-alanine (BMAA) that has been linked to human neurodegenerative disease. The same dolphins also possessed hallmarks of Alzheimer's disease (AD), suggesting a possible association between toxin exposure and neuropathology. However, the mechanisms of neurodegeneration in dolphins and the impact cyanotoxins have on these processes are unknown. Here, we evaluate BMAA exposure by investigating transcription signatures using PCR for dolphin genes homologous to those implicated in AD and related dementias: APP, PSEN1, PSEN2, MAPT, GRN, TARDBP, and C9orf72. Immunohistochemistry and Sevier Münger silver staining were used to validate neuropathology. Methylmercury (MeHg), a synergistic neurotoxicant with BMAA, was also measured using PT-GC-AFS. We report that dolphins have up to a three-fold increase in gene transcription related to Aß+ plaques, neurofibrillary tangles, neuritic plaques, and TDP-43+ intracytoplasmic inclusions. The upregulation of gene transcription in our dolphin cohort paralleled increasing BMAA concentration. In addition, dolphins with BMAA exposures equivalent to those reported in AD patients displayed up to a 14-fold increase in AD-type neuropathology. MeHg was detected (0.16-0.41 µg/g) and toxicity associated with exposure was also observed in the brain. These results demonstrate that dolphins develop neuropathology associated with AD and exposure to BMAA and MeHg may augment these processes.


Asunto(s)
Aminoácidos Diaminos/toxicidad , Delfín Común , Toxinas de Cianobacterias/toxicidad , Agonistas de Aminoácidos Excitadores/toxicidad , Compuestos de Metilmercurio/toxicidad , Enfermedades Neurodegenerativas/veterinaria , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Masculino , Massachusetts , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...